A study of the heat transfer characteristics for a horizontal dry storage system for LWR spent fuel assemblies

Author(s):  
Hiroaki Shibazaki ◽  
Motohiko Nishimura ◽  
Nobuyuki Takahashi ◽  
Sadao Fujii ◽  
Isamu Maekawa
Author(s):  
Bing Ren ◽  
Chenxiao Ni ◽  
Yu Dang ◽  
Jiazheng Liu

A new type of dry storage system is designed by Shanghai Nuclear Engineering Research & Design Institute (SNERDI), which can efficiently remove the decay heat of the hexagonal spent fuel assemblies such as VVER fuel assemblies. The dry storage system includes a Ventilated Concrete Cask (VCC) and a Multi-assembly sealed basket (MSB). Decay heat is removed by natural circulation with helium and air, heat conduction and thermal radiation heat transfer. Thermal performance of the dry storage system has been investigated by two different numerically methods, i.e., the Computational Fluid Dynamics (CFD) method and the lumped parameter method. The CFD method is utilized based on the commercial software STAR-CCM+, and fuel assemblies are modeled as a porous medium characterized by effective conductivity and the permeability and inertial resistance factor, while other geometry including the lids, base plates, inner and outer shell are modeled explicitly with necessary simplifications. The lumped parameter method is utilized based on the system code GOTHIC, the geometry and the fuel assemblies are divided and represented by 44 volumes. The flow of the air and helium are modeled by flow path which connects the related volumes, and the heat transfer between fluid and solid structures are modeled by thermal conductor models. Heat transfer by convection, conduction and thermal radiation is modeled in both of the two methods. The maximum temperature of spent fuel assembly can be obtained by both of the two methods, which can be a design basis for investigations attempting to improve the performance of the dry storage system. It is found that the simulation results calculated by the lumped parameter method are more conservative than those calculated by the CFD method. Both methods indicate that after the storage of 7.5 years, the dry storage system is able to remove the decay heat from the hexagonal spent fuel assemblies, keeping maximum cladding temperature below the design limit. Besides, detailed flow characteristic are obtained by CFD simulation. Furthermore, effects of MSB normal operating pressure and the ambient temperature are studied.


Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5241
Author(s):  
Haichuan Zhao ◽  
Ning Yan ◽  
Zuoxia Xing ◽  
Lei Chen ◽  
Libing Jiang

Electric heating and solid thermal storage systems (EHSTSSs) are widely used in clean district heating and to flexibly adjust combined heat and power (CHP) units. They represent an effective way to utilize renewable energy. Aiming at the thermal design calculation and experimental verification of EHSTSS, the thermal calculation and the heat transfer characteristics of an EHSTSS are investigated in this paper. Firstly, a thermal calculation method for the EHSTSS is proposed. The calculation flow and calculation method for key parameters of the heating system, heat storage system, heat exchange system and fan-circulating system in the EHSTSS are studied. Then, the instantaneous heat transfer characteristics of the thermal storage system (TSS) in the EHSTSS are analyzed, and the heat transfer process of ESS is simulated by the FLUENT 15 software. The uniform temperature distribution in the heat storage and release process of the TSS verifies the good heat transfer characteristics of the EHSTSS. Finally, an EHSTSS test verification platform is built and the historical operation data of the EHSTSS is analyzed. During the heating and release thermal process, the maximum temperature standard deviation of each temperature measurement point is 28.3 °C and 59 °C, respectively. The correctness of the thermal calculation of the EHSTSS is thus verified.


2002 ◽  
Vol 2002.4 (0) ◽  
pp. 237-238
Author(s):  
Yosiaki TSUKUDA ◽  
Norio KONO ◽  
Yoshiei AKIYAMA ◽  
Keiichi HORI ◽  
Takayuki SUEMURA

Sign in / Sign up

Export Citation Format

Share Document